Framework Outline - Team Lithium

Ivette Morales Alexander Alvarado Kelsey Lawson Derek Chang Jacob Orozco

Lithium-Ion Battery for Small Electronics

- Introduction all
 - When Developed
 - The first battery was developed by Alexander Volta in the year 1800 using copper and zinc disks separated by cloth in a briney solution of salt. (history)
 - State of the art
 - The lithium ion is currently the state of the art for it minimizes weight needed while maximizing charge produced (<u>specific energy + general</u> <u>info</u>).
 - Significance
 - Utility to public
 - Provides many uses in regards to handheld devices, electric vehicles, etc.
 - Market share / Market Size
 - According to the report, the global lithium-ion battery market was pegged at \$30.19 billion in 2017 and is expected to garner \$100.43 billion by 2025, registering a CAGR of 17.1% from 2018 to 2025.
 - Leaders in the field
 - Panasonic
 - Samsung
 - Tesla
 - Toshiba
- Manufacturing Process
 - Ores/Mining Jacob
 - Material
 - It is mined from ores of petalite (LiAl(Si2O5)2, lepidolite K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2, spodumene LiAl(SiO3)2 and also subsurface brines. (What ores Li comes from)
 - Cobalt mined in Dominican Republic (and more)
 - Labor

- Most common labor for mining is done in South America.
- Alternative method: a nano-filtration system that uses a set of highly specialized membranes to passively sift lithium from wastewater. (Filtration)
- Cobalt mining in Congo (<u>Labor</u>)
- Energy
 - Uses water and heating to make petalite form into lithium carbonate (<u>How to form lithium carbonate</u>)
- Processing to get Li pure enough for battery processing Kelsey
 - Material
 - Lithium carbonate that is processed into just Lithium (<u>How Li is</u> <u>Processed</u>)
 - Labor
 - Lithium carbonate has to undergo extraction usually through a brine = period can be from several months to a few years (Extraction)
 - Energy
 - The brining process uses an estimated 500,000 gallons of water & is then sent over to processing plants by fossil fuel methods
 (Energy)
- How the actual battery is made Derek
 - Material
 - Most common: Lithium cobalt oxide (cathode) & graphite (anode)
 = used for portable electronic devices (<u>Overview of Li Battery</u>)
 - Labor
 - The cost of a lithium battery is calculated by \$/KWh and typically for smartphones the battery cost is \$2 \$4, while in an electrical vehicle it can cost from \$7,000 \$20,000. The processing and manufacturing usually accounts for 35% of the cost. (Labor)
 - pros/cons
 - Pros
 - Lithium batteries have a much higher energy density than other batteries. (Cost)
 - Cons
 - Lithium-ion batteries are also more expensive to produce, as they can cost nearly 40% more to produce than nickel-cadmium batteries. (<u>Cost</u>)
- Production line Alex
 - Material

- Cathode contains Lithium compounds and binder
 - $\circ \quad \text{Mixing} \rightarrow \text{Coating} \rightarrow \text{Compressing} \rightarrow \text{Drying} \rightarrow \text{Slitting}$
- Anode contains carbon (graphite) and binder
 - $\circ \quad \text{Mixing} \rightarrow \text{Coating} \rightarrow \text{Compressing} \rightarrow \text{Drying} \rightarrow \text{Slitting}$
- Nickel Plating
- Labor
 - Autonomous Labor -- Cell assembly is mostly highly automated work
 - PCB Spot Welding
 - Quality Control
 - Battery testing
 - PCB Nickel Plating welding
 - Manual Labor

Ο

- Inserting insulator paste
- Lower Sheel Capping
- Battery pole spot welding
- Pros/cons
 - Pros
 - Highly Automated factories are able to mass produce the battery components cost efficiently
 - Cons
 - Contamination, physical damage, and burns on the electrodes are particularly dangerous since they can cause short circuits
- Factory findings from companies Ivette
 - A company Details
 - <u>Samsung</u> is one of the leading companies in the market. They are an <u>ODM/OEM</u> company meaning that design and fabricate their products thus cutting down on energy production and labor. They are currently transitioning to an <u>energy storage system</u> in which the company is planning to be more sustainable in terms of energy consumption.
 - Panasonic -- can't find much on production
 - Toshiba has their production line in <u>China</u> where the production and labor costs are low, however that does not mean that they are more energy conservative.
 - Tesla and Panasonic are working together to build the Gigafactory, where other electrical battery producers are able to produce Li-ion batteries more energy efficient.

- Analysis
 - Pros Alex
 - Essential in modern-day electronics
 - Issues Ivette
 - Lithium is a scarce material, it is not necessarily the most <u>sustainable</u> material that is being sourced.
 - It is not the cheapest material to be mined and processed.
 - The production of Li-ion batteries takes <u>29 GJ to produce and 58GJ</u> of user consumption.
 - Cobalt is the most critical material, in terms of scarcity.
- Recommendations
 - Opportunities for improvement Kelsey
 - Solid-state; extraction & recycling process = looking at other ways to mine Li & need more intuitive ways to have people recycle old Li batteries (Extraction)
 - Other materials/alternatives to be used Jacob
 - Lithium-Sulfur, Aluminum Graphite, Bioelectrochemical, Solid-State batteries
- References
 - <u>https://www.sciencedirect.com/science/article/pii/S1364032118300728?via%3Dih</u> <u>ub#s0060</u> (in general lithium battery things)
 - *Lithium Battery Manufacturing*, www.mpoweruk.com/battery manufacturing.htm.
- Acknowledgments
 - For future companies who helped us along the way from interviews, etc.